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Angular Misalignments between Probe Sections of the 
7m Integral Probe for LHC Quadrupole Field 
Measurement 
P. Schlabach 
 
The relative angular offsets between the 3 shaft sections of the integral probe used for 
cold measurements of LHC quadrupoles have been calibrated (given below). I discuss the 
magnitude of the offsets relative to expectations and consider the effect on field quality 
measurements. I also take up the general question of twist and misalignment. 
 

Probe angular alignment 
The 3 probe sections were calibrated in a short corrector dipole so that each section could 
be considered independently. The phase returned by each section is given in the follow 
table.  
 

section
phase 
(rad)

differences 
(wrt avg)

1 -0.585 0.0028
2 -0.605 -0.0173
3 -0.573 0.0145
avg. -0.588
st. dev. 0.01611
sum of squares 0.00052     
 

Probe assembly and alignment 
The probe was actually constructed from 6 pieces of machined G10 tube. The 3 sections 
each consist of two pieces glued together. During the gluing process, alignment of the 
two was made by inserting shim stock into the corresponding slots of the pieces. Shims 
were inserted for the slots in the ~1/4 of the circumference to insure stability and integrity 
of the match during the glue up. Alignment of the 3 sections was made in the same 
manner. However, alignment was complicated by the presence of the bearing housings 
between the sections. The alignment between sections is certainly not as good as that 
between the two pieces in each section which should be good to a fraction of the slot 
(0.01 in./0.25mm). The angular misalignments (between sections 1 and 2 or 2 and 3) 
above correspond to arc lengths of 0.41 and 0.65 mm respectively – a displacement on 
the surface of the probe on the order of a couple of slot widths. Given that the alignment 
must be made over the bearing housing across a gap of 4 cm, this level of alignment is 
more or less as expected given the methods used. 
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Effect of misalignment on field quality measurements 
This analysis is similar to the treatment of a random twist of the probe body in [1]. In this 
case we have a discrete phase in the different probe sections rather than one that is 
continuously changing. We characterize the phase by the average phase of the (3) 
sections δc and the difference from the average in section i of εi. The flux though the 
tangential coils is given by 
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Using the sum of angles formula for sin(A+B) and then the power series expansion of 
sin(nε) and cos(nε) keeping the terms of second order or less - ε(z) being small) - we get 
the following expression for the flux. 
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The first integral has no z dependence and becomes 
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This is the usual angular expression in the sensitivity factor. The third term 
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as the integral of ε over the length of the probe is by necessity zero. Evaluating the 
second term, we get 
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This again has the usual angular piece of the sensitivity factor. We see, then, that the 
sensitivity factor is modified. (Unprimed quantities are the “true” ones.) 
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The harmonic amplitude is calculated from the flux using the unmodified sensitivity 
factor introducing an error in the result. The ratio of the calculated harmonic amplitude 
C′(n) to the true one C(n) is given by 
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This ratio for the specific case we are discussing differs from 1 by 0.04% for n=1 to 0.9% 
for n=10. 

n C'(n)/C(n)
1 0.9999
2 0.9997
3 0.9992
4 0.9986
5 0.9978
6 0.9969
7 0.9958
8 0.9945
9 0.9930

10 0.9914  
 
Perhaps more interesting is the error in normalized harmonic which I will calculate here 
for a quadrupole. 
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This increases the error slightly. (The incorrect measurement of the higher order 
harmonic is normalized to an incorrect value of the main field.) 
 

n c'(n)/c(n)
1 -
2 -
3 0.9996
4 0.9990
5 0.9982
6 0.9972
7 0.9961
8 0.9948
9 0.9933

10 0.9917  
 
Note that there is also an effect on the magnitude of the centering offset z0. 
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In this particular case, the error introduced is 0.03%. 

A discussion of various twist effects 
 
Let’s consider three examples of twist. 
 
The first is a discrete offset between two sections of a probe body. This is the case we 
discuss above. For discussion we will consider an offset ∆ between two probe sections of 
length L/2. 
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The ratio of the sensitivity factor to the ideal one is 
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The second case will be a systematic twist of ∆ from one end of the probe form to the 
other. The probe length is L. We need to evaluate the same integral as before with ε(z) 
given by ∆/L·z. 
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The ratio of the sensitivity factor to the ideal one is 
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The last case is the one discussed in [1]. We have a random twist characterized by a 
deviation ∆ such that 
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In this case the deviation from the ideal sensitivity factor is given by 
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One can see that in some sense the worst case is the random variation. This presumes that 
the probable errors in the 3 cases are likely to be of the same size, not necessarily the 
most likely scenario. 
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